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Abstract
The principal goal of data science is to derive meaningful
information from data. To do this, data scientists develop a
space of analytic possibilities and from it reach their infor-
mation goals by using their knowledge of the domain, the
available data, the operations that can be performed on those
data, the algorithms/models that are fed the data, and how
all of these facets interweave. In this work, we take the first
steps towards automating a key aspect of the data science
pipeline: data analysis. We present an extensible taxonomy of
data analytic operations that scopes across domains and data,
as well as a method for codifying domain-specific knowledge
that links this analytics taxonomy to actual data. We validate
the functionality of our analytics taxonomy by implement-
ing a system that leverages it, alongside domain labelings for
8 distinct domains, to automatically generate a space of an-
swerable questions and associated analytic plans. In this way,
we produce information spaces over data that enable complex
analyses and search over this data and pave the way for fully
automated data analysis.

1 Introduction
Data science is a vast and interdisciplinary field whose prin-
cipal goal is to derive meaningful information from data.
The data science pipeline traditionally consists of data in-
gestion, cleaning this data, analyzing the data, and then pre-
senting results to stakeholders (Biswas, Wardat, and Rajan
2022). In this work, we focus solely on automating the data
analysis portion of this pipeline. To carry out data analysis,
data scientists use domain knowledge, the available data, the
operations and algorithms that can be used to derive infor-
mation from that data, and how all of these facets interweave
to develop a space of analytic possibilities and reach their
information goals. Due to the technical skills required, per-
forming good data analysis is a very demanding task, and it
takes a significant amount of training to do it well.

With the vast amounts of data being generated on a daily
basis, it is becoming increasingly difficult for organizations
to produce high quality and accurate information from it all.
This is particularly problematic in domains with high stakes
such as healthcare, journalism, and policy making since ac-
cess to high quality and accurate information is crucial for
sound decision making. However, while data scientists are
employed across a wide range of such domains, it is not fea-
sible for every organization to hire the requisite number of

data scientists due to both cost constraints as well as an ever
increasing demand for data scientists.

Furthermore, not every domain expert has the technical
skills needed to translate the questions they want answered
into queries and analysis against the available data. As a
result, data scientists typically serve as the bridge between
these domain experts and the data. Data scientists work with
domain experts who have extensive knowledge of the data
and the real-world entities it describes, and then apply their
knowledge of analytic operations and algorithms to produce
the desired information. Importantly, there is a clear sepa-
ration of concerns between domain knowledge and analytic
knowledge. We will take advantage of this when producing
the lightweight knowledge representations that will com-
prise the foundation of our approach for automating data
analysis.

Within the current literature, there are a variety of ap-
proaches to automating data analysis. AutoML libraries like
Auto-WEKA (Thornton et al. 2013), auto-sklearn (Feurer
et al. 2015), and AutoKeras (Jin, Song, and Hu 2019) seek to
automate the model building process, but still require a data
scientist to make decisions about how best to utilize the data.
The method that comes closest to enabling non-technical ex-
perts to derive information from data is (Paley et al. 2021), in
which the authors sought to enable domain experts to more
easily perform data analysis via a notebook style interface.
However, their representations of analytic operations and
domain knowledge are lacking. The set of analytic opera-
tions they implement specify the data they can operate on
based on native relational database types (i.e. integer, var-
char, boolean). This will ensure that the analysis being per-
formed is structurally valid. However, this does not mean
that the results will be meaningful as well. That is, know-
ing that an average can be applied to any numeric column
is far less useful than knowing that it should be applied to
columns which represent the key metrics which will be used
for evaluation. Additionally, existing operations cannot be
composed into more complex operations. This is due to the
lack of typing information for the outputs of the operations,
as well as the rigid plan representations that requires a single
analysis operation to be performed on a single data column
with optional grouping and filtering. These issues are all
problematic on their own, but taken together they severely
limit the scalability of this approach.



Figure 1: In the top left box, analytic operations as defined by the taxonomy we propose. Each operation has a type which
specifies an ”isa” relation with its parent type. The inputs and outputs are defined according to the number of inputs and the
attribute types which can be passed in. For example, the Subtract operation shown above takes in two or more inputs which
can have a type of either Arithmetic or Metric, and it will output one value which will have types of Arithmetic and Metric.
The meanings of these attribute types are shown in the bottom box. In the top right are two entities from a single domain
labeling. For simplicity, only the attributes and their types are shown. The types for each attribute provide an indication of how
these attributes should be analyzed by operations in the analytic taxonomy to produce meaningful information. More in depth
discussion of these concepts are provided in Section 3.

Our primary goal is to enable autonomous systems to be
able to make the same kinds of decisions that data scien-
tists make to derive meaningful information from data. In
this paper, we lay the foundations for automating data anal-
ysis by building representations for the internal knowledge
and processes a data scientist utilizes when deriving infor-
mation from data. We present a novel domain-independent
and expandable taxonomy of analytic operations that cap-
tures knowledge needed to automate data analysis. In or-
der to know how these operations should map to available
data, we define a taxonomy of attribute types. The inputs
and outputs of the analytic operations are defined in terms of
the attribute types which both constrain the analysis to pro-
duce useful information and enable operations to be easily
composed into more complex operations. We also present a
formal domain labeling which specifies complementary do-
main knowledge. With this domain labeling, the tables and
columns of a relational database are mapped to entities, at-
tributes, and the relationships between them. Each attribute
maps to an underlying column of the data and is given an
attribute type that links the data to the analytics taxonomy.
Since the creation of a domain labeling is done manually,
we put a particular emphasis on ensuring that the domain-
level expansion process is simple, with the aim of enabling

domain experts to bring in data and explore the space of in-
formation it encodes. A sample of these knowledge repre-
sentations is provided in Figure 1.

We also develop an analytic plan representation that en-
ables complex analyses to be composed in terms of the enti-
ties and attributes present in the domain labeling. This rep-
resentation is agnostic with respect to the underlying data
medium. This means that details like table joining, which are
often a part of SQL queries, are abstracted away. The hope
is this representation is easier for data scientists to write, as
well as more interpretable for those without a data science
background than query languages like SQL and SPARQL.
We build an analytics engine which is capable of execut-
ing these analytic plans by generating the required queries
against the underlying data.

With this work, we seek to bring out the space of mean-
ingful information based on the available data and analytics.
To this end, we develop a planning component that can gen-
erate a wide variety of useful analytic plans for a given do-
main labeling. We build a language generation component
which can produce the question this analytic plan is meant
to answer. In this way, the space of analytic possibilities can
be surfaced in natural language. To demonstrate the gener-
ality of our approach, we create domain labelings for 8 dif-



ferent domains: healthcare, urban housing, criminal justice,
environmental sustainability, education, legal and judicial,
socioeconomics, and business. We use these in conjunction
with our planner to showcase the kinds of useful information
our approach can present to a user. The ability to generate
this plan space paves the way for the future development of
automated search techniques and greater automation of data
analysis.

The primary contributions of this paper are:

• A lightweight and extensible taxonomy of data analytic
operations that scopes across domains and data.

• A method for producing domain-specific labels that links
this analytics taxonomy to actual data and provides lin-
guistic constructs that enable improved communication
of any derived information.

• An execution agnostic plan representation that enables
the retrieval and analysis of data according to the entities
in the domain labeling.

• A method for leveraging the analytics taxonomy and do-
main labeling in order to build searchable information
spaces over data that surfaces meaningful information in
natural language, making complex analyses and search
over this data easily available to non-technical human ex-
perts.

2 Related Work
Existing Upper Ontologies Explicitly representing the
knowledge that a data scientist uses can provide a means
to automate the decisions data scientists must make in or-
der to carry out data analysis. Formalizing world knowledge
with structured representations in the form of an ontology
has long been a way to imbue systems with an understand-
ing of the entities and features of the domain they oper-
ate in. Such knowledge representations provide the structure
necessary for a wide range of reasoning and inference pro-
cesses to function. Ontologies such as Wikidata (Vrandečić
and Krötzsch 2014) seek to codify general world knowl-
edge, ontologies such as Cyc (Lenat 1995) are designed to
encode commonsense rules as well, and ontologies such as
Basic Formal Ontology (BFO) (Arp, Smith, and Spear 2015)
aim to promote integrability among domain ontologies em-
pirically. Existing ontologies and representational languages
provide some degree of mathematical knowledge or ways to
incorporate it (Lange 2013; Angles, Thakkar, and Tomaszuk
2019). However, their primary focus is to provide a means
for automated proof solving rather than data analysis. Fur-
thermore, while large scale ontologies such as these are
specified enough to be used for a diverse range of areas, they
are cumbersome to extend for anyone not already steeped
in complex web of relations they specify. This limits their
utility when the expected user is a domain expert who has
never been exposed to such formalisms. This makes them
poor candidates for a representational medium for our pur-
poses.

Domain-Specific Knowledge Representations It is often
the case that highly specialized ontologies are developed for

use within a particular domain. Indeed, such knowledge rep-
resentations have been developed for a diverse range of ar-
eas such as medicine (Salvadores et al. 2013), law (Casel-
las 2011), food (Kamel Boulos et al. 2015), chemical en-
gineering (Marquardt et al. 2010), and biological environ-
ments (Buttigieg et al. 2013). However, the production of
ontologies such as these requires extensive expertise in on-
tology design and substantial amounts of time since they re-
quire end-users to survey their respective domain in order to
use them. This can be a challenging task for non-technical
users. What would be more useful is a formal representation
of data analytic knowledge that can scope across multiple
domains with as little configuration required as possible.

Knowledge Representations for Data Science The cre-
ation of knowledge representations for data science has re-
cently emerged as an area of interest. For instance, (Pat-
terson et al. 2019) have semantically enriched data science
scripts with the goal of successfully modeling computer pro-
grams. However, their work focuses more on supporting au-
tomated reasoning about data science software rather than
encoding core analytic knowledge and processes that can be
used when mapping analytics onto data in a domain-agnostic
fashion. (Sicilia et al. 2018) presents a way to describe the
data transformations that can be applied as part of a data sci-
ence pipeline. Our work includes this as a subcomponent of
a model for describing how analytics map onto data and how
formalized domain knowledge can be utilized to determine
the kinds of analyses that will result in meaningful informa-
tion. In an effort to codify knowledge around data, as well
as to increase interoperability and reusability of methodolo-
gies, multiple other representations have been created. Ex-
amples of these include DMOP for data mining processes
(Keet et al. 2015), PMML for machine learning models
(Guazzelli, Stathatos, and Zeller 2009), SDMX (Capadisli,
Auer, and Ngonga Ngomo 2015) and STATO (Gonzalez-
Beltran and Rocca-Serra 2016) for statistics, and even some
ontologies for modeling data transformation and workflows
(Bowers and Ludäscher 2004) (Barker and Hemert 2007).

AutoML for Data Analysis There exist approaches that
seek to make it easier to perform data analysis. AutoML li-
braries such as Auto-WEKA (Thornton et al. 2013), auto-
sklearn (Feurer et al. 2015), and AutoKeras (Jin, Song, and
Hu 2019) aim to make it simpler to train high quality mod-
els given a set of data. However, these are aimed at providing
tools that speed up the workflow of established data scien-
tists and require that the user make complex decisions about
how data should be utilized within the scope of these tools.
Automating these decisions would provide an avenue for ex-
panding access to the high quality information which data
scientists produce. Libraries such as these could ultimately
be incorporated into a system based on the knowledge rep-
resentations we present in the following section.

3 Methodology
In this section, we present the data analytics taxonomy
which provides a lightweight and extensible description of
analytic operations and the kinds of data they are meant to



Figure 2: The analytics taxonomy which encodes knowledge of data analytic operations and processes. It is designed to be
extensible and, in addition to those shown in here, currently comprises 11 aggregation operations, 9 boolean operations, and 6
mathematical operations. This taxonomy specifies a conceptual mapping between these operations and the types of data that
makes sense for them to operate upon, much in the same way a data scientist identifies the appropriate analysis to carry out on
any given data.

operate on. We also present the domain labeling which is an-
other lightweight representation built on top of data that pro-
vides information about the entities described by the data.
Taken together, these two representations allow for analyses
to be mapped to data such that information which is mean-
ingful to an end user can be derived automatically.

Data Analytics Taxonomy
In order to automate the data analysis process, a representa-
tion of analytic operations, their functionality, and their in-
puts and outputs must be specified. Such a representation
can be leveraged to determine what analysis can be per-
formed on any given piece of data, how this data will be
transformed as a result of this analysis, and how this result
can be used as input to other analytic operations. The ana-
lytics taxonomy we present is shown in Figure 2.

Analytic Operations Analytic operations take in at-
tributes as inputs and produce an output which can be con-
sidered as a derived attribute. Not all analytic operations
specified in the taxonomy can be or should be applied to all
types of attributes. A key goal of the analytics taxonomy is
to provide this mapping between analytic operations and the
data. A simple way to do it would be to use the type infor-
mation from the database (float, integer, varchar). However,
naively applying an analytic operation, like an average, to
every integer or floating point attribute will result in useless
information. In contrast, if we define attribute types for the
data which indicate what an attribute is at a deeper level,
then we can provide the necessary knowledge to an underly-
ing analytic system so that it knows when it can effectively
apply a piece of analysis in order to produce meaningful in-
formation. This is done by specifying an attribute type for
the inputs and outputs of each analytic operation. Examples
of analytic operation definitions can be found in Appendix
B.

Attribute Types
We define six main attribute types which enable us to test
functions against the data to determine what analytics can
be performed. For example, it makes sense to perform a
max operation on a column of a patient’s heart rate measure-
ments, but performing a sum operation on heart rate column
serves no practical purpose. To provide the necessary infor-
mation to determine when it makes sense to apply a piece of
analysis, we specify type information for each attribute. The
six main attribute types are:

• Arithmetic: numerical values for which mathematical
operations make sense

• Categorical: discrete values typically denoting a class or
category

• Datetime: values designating a date and time
• Document: values containing free text
• Identifier: values meant to be used as a unique identifier

for an entity
• Metric: values meant to be used as a measure

By defining attribute types for the data indicating what
the attribute is, the system can know when to apply a piece
of analysis such that meaningful/relevant information can be
produced. For example, assume there is a dataset comprising
business reviews with a Business entity which has attributes
number of reviews and rating. They would both be consid-
ered Arithmetic attributes, while only rating is a Metric, as
it can be used as a measure of the entity in the context of
this dataset. These attribute types are leveraged to constrain
the space of possible analytics that can be performed on the
entities specified in a domain labeling.

We also define a set of attribute types reserved for derived
attributes, which are those attributes that result from execut-
ing an analytic operation. These include:



• Entity: value that results from retrieving an entity
• Attribute: value that results from retrieving an attribute
• AttributeCollection: values that result from collecting

many attributes
• Group: value that results from grouping by an attribute
• Filter: value that results from specifying a filter
• Sort: value that results from specifying a sorting order

over the results
• Limit: value that results from specifying a limit over the

results
• String: value that results from specifying a particular

string to use
For each of the operations in the data analytics taxonomy,

each of the input and output attributes are constrained to
have one or more attribute types. For example, the average
operation would have exactly one mandatory input argument
with an attribute type of either Arithmetic or Metric. It would
have a second optional argument with the Group derived at-
tribute type. The output of this operation would be a single
derived attribute with a type of either Arithmetic or Metric.
For a full listing of the operations, operation type, and their
input and output attribute types, please see Appendix A.

Domain Labeling
In order to effectively apply the operations specified in the
analytics taxonomy to data, we produce a lightweight map-
ping called a domain labeling which specifies the entities
that comprise the data, their attributes, and the relationships
between these entities. Each of the attributes has one or more
attribute types which allows them to be linked to the analyt-
ics taxonomy. Importantly, these domain labelings are sim-
ple to specify relative to conventional domain ontologies and
the process of creating them is more similar to tagging than
the knowledge engineering that is applied when producing
an ontology. In this section, we present further details of how
this domain labeling is specified.

Entities Entities defined by a domain labeling specify one
of the entities represented in the corresponding database. An
entity is a concept that groups relevant data together, poten-
tially spanning multiple underlying data tables, into a single
unified grouping. This entity contains attributes (which map
to columns of the data that comprise the entity) and has rela-
tionships with other entities (which map to one or more joins
across the data tables). Each entity has a uniquely identify-
ing name which is used to refer to it when performing anal-
ysis on its attributes. An example of this can be seen for
a subset of instances in the healthcare domain in Figure 3.
For this dataset which details information about visits to the
emergency room, entities include patients, stays, tests/diag-
nostics performed on the patient, and ER centers. Note that
in Figure 3, for the domain depicted, only a subset of all the
entities, attributes, and their types are shown. For examples
of fully specified domain labelings, please see Appendix C.

Attributes Each entity has one or more attributes, each
of which maps to a column of one of the underlying
database tables comprising the entity. Each attribute has a

data type (e.g. integer, float, string) and one or more at-
tribute types (e.g. categorical, metric, arithmetic). The for-
mer is used when producing the object-relational mapping
for the database and the latter is used to connect this at-
tribute to the operations from the analytics taxonomy that
can be applied to this attribute.

Each attribute also has a ”nicename” that provides a more
descriptive label for the attribute than the column name, as
well as the units for this attribute, if any. For example, the
attribute ”dbp” could have the nicename of ”Diastolic Blood
Pressure” and units ”mmHg”. These two properties of the at-
tribute are used by the language generator described in Sec-
tion 6.

Relationships Relationships define the connection be-
tween two entities in the labeling. These relationships can
be one-to-one, one-to-many, or many-to-many. In the speci-
fication of the domain labeling, they are represented as an
abstraction of one or more SQL joins. Adding Relation-
ships between Entities forms a domain graph schema, and
each provides relevant metadata (e.g. one Subject can have
many Emergency Department Stays). For instance, with a
one-to-many relationship, the entity on the many side can be
grouped by the entity on the one side. This allows for ag-
gregations to be applied to the entity on the one side. For
example, the system knows it is possible to compute the av-
erage of stay duration grouped by subject ID based on the
type of relationship between the two entities these attributes
come from.

4 Analytic Plan Representation
In order to effectively use the domain labeling and analytic
taxonomy, we require an expressive and compositional plan
representation. Existing representations like SQL are inad-
equate since the analytics taxonomy scopes beyond the op-
erations supported within this query language. Additionally,
this higher-lever plan representation abstracts away specific
implementation details of the specific underlying query lan-
guage (e.g., SQL joins), meaning not only is it simpler to
use, but also that it is agnostic to the data storage format
and corresponding query language. This allows underlying
implementations to seamlessly expand beyond SQL opera-
tions in the future (e.g., to ontological or textual data). To
satisfy this representational need, we define an analytic plan
representation which allows for the specification of plans in
which the entities and attributes defined in the domain label-
ing are retrieved and analyzed using the operations defined
by the analytics taxonomy. An example of this plan repre-
sentation can be seen in Figure 4.

Plan Structure
Plans are represented as a directed acyclic graph that spec-
ifies an ordered series of steps to carry out, wherein oper-
ations are chained together in order to retrieve and analyze
data. Each node of the graph represents an operation whose
output is fed to later steps that require the results. In this way,
arbitrarily complex plans can be composed to satisfy any in-
formation goal that can be described with the available data
and analytics.



Figure 3: A truncated example of a domain labeling which specifies entities, their attributes, and how they relate to each other
for a dataset in the healthcare domain. The entity name is given in bold, attributes are listed on the left, and their corresponding
attribute types are shown on the right. Each of these attributes maps to specific column of the underlying database, and each
of the relationships provides the joins between the underlying tables. This formulation enables analytic plans to be specified
in terms of the entity attributes without regards to how the tables should be joined, thus abstracting out implementation details
that can be automatically handled with an execution engine.

Leveraging the analytics taxonomy allows this represen-
tation to support standard operations in the underlying query
language (e.g., SQL), for example, retrieval, aggregation,
groupby, filtering, sorting, etc. Entities and attributes de-
scribed by the domain labeling can be retrieved using the re-
trieve entity and retrieve attribute operations. Analytic op-
erations take these attributes as input and produce derived
attributes (i.e. ones which are not present in the domain la-
beling), which can be used as input to subsequent operations.
In this way, arbitrarily complex analysis can be composed by
chaining operations together. Data manipulation operations
such as sort and limit are also supported, as are filtering op-
erations like comparison and boolean operators.

Both entity attributes and derived attributes can be passed
to the collect operation in order to stage them for output in
the final results. The return operation takes in the attributes
to be collected, along with any sort, filter, and limit opera-
tions that were specified. Each return operation denotes the
end of a plan and results in a structure which is analogous
to a single SQL query. Subsequent queries can retrieve at-
tributes collected by prior queries. In this way, subplans,
which are analogous to nested queries or ”subqueries” found
in SQL, can be represented.

5 Analytics Engine
Execution of analytic plans requires that they first be con-
verted to a query format that is native to the datasource (e.g.,
SQL for relational databases) and then executed to retrieve
results. This is where the analytics engine comes in.

Plan Parsing and Execution
Conversion of the graph-structured analytics plan into a
query language is done by first breaking the graph into ”sub-
plans”, where the result of one subplan functions as a data
source for subsequent subplans. From each subplan, the nec-
essary information to form an executable query, including
entities, their attributes, analytics operations, and filters, is

Figure 4: The analytic plan in textual and graph forms are
shown for the question: “What is the average carbon emis-
sions grouped by year in ascending order for the United
States of America?”

then identified. For example, in the plan in Figure 4, the at-
tributes country, amount, and year are retrieved from the
CarbonEmission entity. The average operation is applied
to amount, grouped by year. Lastly, the results are sorted
by year and restricted such that country has value ”United
States of America”. From this information, the query is
constructed using a query abstraction library (for relational
databases we use the SQLAlchemy Python package (Bayer
2012)). In this last step, the domain labeling is leveraged to
convert the entity and relationship abstractions to the proper
tables and joins.

SQL Object Relational Mapping
While the system’s analytics engine is designed to be ex-
tendable to a variety of data source types, it is currently only
configured to execute queries against relational databases.
Upon initialization, for each selected domain labeling, a cor-



responding object relational mapping (ORM) is built using
SQLAlchemy. The ORM provides a programmatic interface
between the information defined in the domain labeling, and
the data stored in a relational database.

The ORM is constructed using configuration mappings
defined in the domain labeling, specifically, the tables,
columns, and joins between tables. Unlike objects defined
in the domain labeling, the ORM objects hold a direct one-
to-one correspondence with database objects; ORM entities
correspond to tables, attributes correspond to columns, etc.

Implicit Joins
A major benefit provided by the abstractions of the domain
labeling is that, for a given domain, relationships between ta-
bles need only be defined once (in the configuration mapping
of the domain labeling). No join information of any kind is
required in plan definitions. Instead, the system leverages the
joins and relationships defined in the domain labeling to de-
termine which SQL joins to use when attributes are selected
corresponding to columns of different tables.

First, all necessary joins between tables within an entity
are identified. These intra-entity joins are necessary when
multiple attributes are specified as belonging to the same en-
tity, but correspond to columns from different tables. Then,
all joins between each pair of entities in a given plan are
identified by collecting joins along the shortest path of rela-
tionship links between those entities.

6 Evaluation
To illustrate how the analytics taxonomy can be operational-
ized as a real system, we develop a prototype system that
utilizes the operation taxonomy and a domain labeling to
produce a set of useful analyses and information that can be
derived from data described by the domain labeling. These
analyses are presented as a set of natural language questions
that can be answered using the data and available analytics.
Each question has a corresponding analytic plan that speci-
fies how to derive these answers from data, and the analytics
engine is equipped with a code implementations of the oper-
ations specified by the domain-independent analytic taxon-
omy. The key idea with this approach is that anyone, includ-
ing domain experts without data analysis skills, can search
through the list of questions and pick ones they want the an-
swer to. Figure 5 shows the process flow for exposing these
information spaces to a user.

Domains
To demonstrate a variety of applications of our approach
in a wide range of domains, we evaluate our system using
data from 8 domains. We specify a domain labeling for each
of these domains. Each labeling determines the domain-
relevant features of the data and how they map to real world
concepts and other in-domain entities. Below is a list of do-
mains and datasets for which we seek to surface the space of
meaningful information possibilities.

Education The Illinois Report Card is an annual report re-
leased by the Illinois State Board of Education that shows
how the state, and each school and district, are progressing

Figure 5: The domain labeling encodes knowledge of the en-
tities present in a database, while the analytics taxonomy en-
codes knowledge of the core analytic processes which pro-
vide a conceptual framework for performing analytics on
these entities. This knowledge is passed to the plan gen-
erator, which constrains its generation of plans to a sub-
set of meaningful plans based on the attribute types. For
each of these plans, the question generator produces a nat-
ural language question. By surfacing these plans in natural
language, we provide a means by which people can easily
search the space of meaningful information, and pave the
way for more automated methods, such as by using vector
embedding models.

on a wide range of educational goals (Illinois State Board of
Education 2022). The Report Card offers a complete picture
of student and school performance in order to inform and
empower families and communities as they support their lo-
cal schools.

Criminal Justice The Center for Homeland Defense and
Security’s Shooting Incidents at K-12 Schools dataset (Cen-
ter for Homeland Defense and Security 2023) describes
shooting incidents based on publicly available data on such
happenings from the beginning of 1970 through June of
2022. An incident is defined as any occasion when a gun
is brandished, is fired, or a bullet hits school property for
any reason, regardless of the number of victims, time of day,
or day of week.

Legal and Judicial The Systematic Content Analysis of
Litigation Events Open Knowledge Network (SCALES-
OKN) dataset (SCALES OKN 2021) comprises two under-
lying datasets: PACER, the official source for electronic fed-
eral judicial records, and the Federal Judicial Center’s (FJC)



database of appointed federal judges. SCALES-OKN incor-
porates some of PACER’s docket reports (ten years of docket
reports from Northern Illinois district courts from 2007 to
2016, and docket reports from every district court in 2016)
and judge metadata (birthdate, gender, race/ethnicity, history
of appointments, appointing parties, education, and profes-
sional career).

Healthcare The Medical Information Mart for Intensive
Care (MIMIC-IV-ED) database (Johnson et al. 2023) con-
tains critical care data for over 40,000 patients (with patient
identifiers removed according to the Health Insurance Porta-
bility and Accountability Act (HIPAA) Safe Harbor provi-
sion) admitted to intensive care units at the Beth Israel Dea-
coness Medical Center (BIDMC). MIMIC-IV-ED adopts a
modular approach to data organization, highlighting data
provenance and facilitating both individual and combined
use of disparate data sources.

Business The Yelp Open Dataset (Yelp Inc. 2023) is a sub-
set of Yelp’s businesses, reviews, and user data for use in
personal, educational, and academic purposes. This dataset
was collected by Yelp, and draws upon 5,996,996 reviews,
188,593 businesses, and 280,992 pictures from the Yelp plat-
form.

Environmental Sustainability Within this domain, we
bring together two datasets. The first is the Air Quality Data
Collected at Outdoor Monitors Across the US (United States
Environmental Protection Agency 2015). It contains an an-
nual summary of Air Quality Index (AQI) values (an indica-
tor of overall air quality taking into account all of the criteria
air pollutants measured within a geographic area) for coun-
ties or core based statistical areas (CBSA). The summary
values, which include both qualitative measures (days of the
year having “good” air quality, for example) and descrip-
tive statistics (median AQI value, for example), may vary in
availability by area on account of many areas having moni-
toring stations for some, but not all, of the pollutants.

The second is the Spatial Wildfire Occurrence data for
the United States (Short 2022). This dataset contains spa-
tial information about wildfires that occurred in the United
States from 1992 to 2020 drawn from the records of fed-
eral, state, and local fire organizations. It includes 2.3 mil-
lion geo-referenced wildfire records, representing a total of
180 million acres burned during the 29-year period, as well
as identifiers necessary to link the point-based, final-fire-
reporting information to published large-fire-perimeter and
operational-situation-reporting datasets.

Urban Housing The Zillow Observed Rent Index (Zillow
Group, Inc. 2023) is a rental price index designed to accu-
rately represent the entire rental housing market, not just the
properties currently listed for rent. It achieves this by consid-
ering the entire rental housing stock. This index is expressed
in dollars and is calculated by determining the average rental
prices falling within the 40th to 60th percentile range for
all homes and apartments in a specific region. This calcu-
lation is performed at different geographical levels such as
national, metropolitan, county, city, and zip code, as long as
there is enough data available. To maintain accuracy, these

calculations are weighted to account for the distribution of
rental properties within the area.

Socioeconomic Within this domain, we bring together
datasets from two primary sources. The first is the Personal
Income by County, Metro, and Other Areas report from the
U.S. Bureau of Economic Analysis captures the (not season-
ally adjusted) personal income of a country, metro, or other
area (the income that is received by, or on behalf of, all the
individuals who live in said area; estimates of personal in-
come are presented by the place of residence of the income
recipients) (U.S. Bureau of Economic Analysis 2022; U.S.
Bureau of Labor Statistics 2023).

The second is The U.S. Census Bureau’s Small Area
Income and Poverty Estimates (SAIPE) program provides
annual estimates of income and poverty statistics for all
school districts, counties, and states (U.S. Census Bureau
2022b,a,c). The program produces annual estimates of,
among other measures, the number of children under age
18 in poverty.

Generating Information Spaces
The definition of the domain labelings in tandem with the
analytics taxonomy makes possible the generation of an in-
formation space: the set of all meaningful information that
this data can convey given the available analysis.

Plan Generation We produce analytic plan templates cor-
responding to these information goals which have fillable
slots, allowing for executable plans to be generated and ex-
ecuted within the target domain by filling in these slots. Slot
types include entity, attribute, and analysis operation slots.

To generate the space of possible plans, all combinations
of the objects in the domain labeling that match a slot type,
are used for filling that slot. For example, for a labeling
defining a legal domain, the entity slot may be filled by a
Judge or a Case entity. An attribute slot may be filled by
a name or age attribute (if the entity slot has been filled
by the Judge entity); or case name, duration, or year (if
the entity slot has been filled by the Case entity). In this
way, the attribute slot is constrained by the entity it is being
drawn from. Attribute slots are also constrained according
to their attribute type. For example, a Metric attribute slot
may only be filled with attributes of this type (e.g., salary,
duration, etc.), and a Categorical attribute slot may only be
filled by categorical attributes (e.g., case type, year, etc.).
This separation of types is particularly useful for plan tem-
plates that incorporate grouping aggregations, as the cate-
gorical attribute will generally be the attribute to group on,
whereas the metric will generally be the attribute to aggre-
gate. Finally, an analysis operation slot may be filled by any
analysis operation whose inputs match the plan structure at
hand. In many cases, this is an aggregation (e.g., sum, max,
min, average, etc.). The plans generated by filling these pa-
rameter slots with all possible combinations of valid argu-
ments comprises the portion of the information space repre-
senting information goals that ask questions about the data
without referring to a specific instances of entities in the data
(e.g., ”What is the average case duration grouped by year?”).



Domain Questions
Environmental
Sustainability

What is the max air quality index grouped by year for state of Washington?
What is the average fire size grouped by year for state of California?

Healthcare What is the disease for stay id of 31945330?
What is the count of stay id for subject id of 10023239?

Urban Housing
For date sorted in descending order and limited to the top results, what is the average rent for region
name of United States?
What is the average rent for region name of San Francisco, CA?

Criminal Justice
What is the count of unique incident id for weapon type containing ”handgun”?
Is the count of unique incident id for weapon type containing ”handgun” greater than count of
unique incident id for weapon type containing ”rifle”?

Education
What is the correlation between total per pupil expenditure and percentage of students with an sat-
math scores that exceed standards for county of DuPage County?
What is the average student enrollment for county of Adams and school type of HIGH SCHOOL?

Legal and Judicial What is the average case duration grouped by case type?
What is the average case duration grouped by year for name of colleen kollar-kotelly?

Socioeconomic What is the average personal income grouped by year?
What is the estimated people below 17 in poverty for county of Wayne County?

Business What is the average star rating for business of Lou Malnalti’s?
What is the count of business for city of Philadelphia?

Table 1: A suite of example questions which can be surfaced via the plan generator. These represent a small subset of the useful
information that can be derived for each of the domain labelings given the operations defined in the analytics taxonomy. Each
question corresponds to an analytic plan which can be executed with the engine. In this way, meaningful information can be
easily derived from any given dataset by specifying the lightweight domain labeling.

Additionally, the information space includes plans that
answer questions about specific instances of entities in the
domain labeling, rather than questions about aggregations
over all entities in the data (as the information goals de-
scribed above do). For example, ”What is the average case
duration grouped by year for judge name coleen kollar-
kotelly?” This is done by adding a filler slot to the plan that
limits it to a specific entity instance. Plans of this type are
generated by filling this slot with each possible unique in-
stance of this entity in the data. For example, for a judge
= [name] filter, a different plan is generated by substitut-
ing [name] with each of the possible judge names in the
data. Together, by filling these templates with possible com-
binations of values from the domain labeling, analytic tax-
onomy, and database, a vast, yet tractable space of useful
analytic plans is surfaced to the user.

Question Generation Since graph-based plan representa-
tions are not the most intuitive way for lay-people to un-
derstand what kind of information can be derived from the
data, we build a template-based language generator which
can produce a corresponding question for each of the an-
alytic plans. To generate a question, the plan graph is tra-
versed in reverse order starting from the terminal return
operation node. The attributes to be included are deter-
mined by examining the collect operation referenced by the
return operation references. For example, the return op-
eration in Figure 4 (step |10|) references collect (step
|9|), which references retrieved attributes year and aver-
age amount grouped by year (steps |5| and |7| respec-
tively). Filters are expressed by examining filter operations
referenced by the return statement and mentioning them us-
ing a predefined ”nicename” (e.g., ”of” for exact, ”greater
than” for greaterthan, etc.). Similar language patterns are

used for other operations. So, for example, the question gen-
erated from this plan is ”What is the average amount of car-
bon emissions grouped by year in ascending order for coun-
try of United States of America?”

The analytic taxonomy and domain labeling specify lan-
guage templates for the analysis operations and nicenames
for the entity attributes, respectively. The analytic language
templates are filled in using the attribute nicenames in order
to produce simple language statements that can be used to
express the meaning of each step of the analytic plan. These
simple language statements can be chained as necessary (for
nodes with ancestors) and joined together (for plans that re-
turn multiple outputs). The result of this is a natural language
question describing a corresponding analytic plan. Figure 5
depicts how the plan generator leverages the domain label-
ing, analytics taxonomy, and analytics engine to generate the
space of possible questions. Examples of questions for each
of the 8 domains that were generated with this method can
be seen in Table 1.

These sample questions demonstrate examples of possi-
ble questions that get surfaced for a particular domain label-
ing, and represent the space of meaningful information that
a user may be interested in deriving.

7 Conclusion
In this paper, we introduce an analytics taxonomy that en-
codes knowledge of analytic operations and how they map
onto data in order to replicate key pieces of knowledge
that data scientists use to derive meaningful information
from data. To complement this knowledge representation,
we showcased a system for surfacing quality information
from datasets in a wide range of domains. In the future, we
will seek to encode more data science knowledge by iden-



tifying new attribute types and increasingly granular cate-
gories of types. For instance, Metrics could be further bro-
ken down into diagnostic and ranking metrics to distinguish
between measures that can be used for competitive compar-
isons (e.g. sales performance) versus those that should not
(e.g. heart rate of patients in a hospital). We will also be
exploring ways in which the information derived by the an-
alytics engine can be better communicated (e.g. via docu-
ments and visualizations). This work lays the foundation for
further work towards automating data science and providing
systems that allow all people, regardless of their technical
background, to derive meaningful insights from their data.
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Vrandečić, D.; and Krötzsch, M. 2014. Wikidata: a free
collaborative knowledgebase. Communications of the ACM,
57(10): 78–85.
Yelp Inc. 2023. Yelp Open Dataset. https://www.yelp.com/
dataset.
Zillow Group, Inc. 2023. Housing data - Zillow Research.
https://www.zillow.com/research/data/.

A Taxonomy of Analytic Operations
A listing of the operations currently available within the an-
alytics taxonomy can be seen in Table 2. This taxonomy
was designed with extensibility in mind, and currently im-
plements most major SQL operations.

B Examples of Analytic Operation
Definitions

Below are examples of definitions of three of the analytic
operations used by the system. Listing 1 is a definition for
the Average aggregation operation, Listing 2 is a definition
for the Greater Than or Equal data operation, and Listing 3
is a definition for the Multiply arithmetic operation.

The definitions comprise four components: the name, in-
put argument types, output argument types, and language
template. The name is the formal identifier that gets refer-
enced when using the operation in the plan definition. The
input argument types are used to restrict the types of values
accepted as parameters to the operation, while the output
types define the type of value that is output by the operation.
The language template is used to aid in generating a question
that corresponds to a plan where the operation is used.

1 {
2 "name": "average",
3 "input_args": [
4 {
5 "arity": "1",
6 "types": [
7 "Arithmetic",
8 "Metric"
9 ]

10 },
11 {
12 "arity": ">=1",
13 "types": ["Grouping"]
14 }
15 ],
16 "output_args": [
17 {
18 "arity": "1",
19 "types": [
20 "Arithmetic",
21 "Metric"
22 ]
23 }
24 ],
25 "language_template": "average {0}"
26 }

Listing 1: Average Operation Definition

1 {
2 "name": "greaterthan_eq",
3 "input_args": [
4 {
5 "arity": "2",
6 "types": [
7 "Arithmetic",
8 "Metric",
9 "Datetime"

10 ]
11 }
12 ],
13 "output_args": [
14 {
15 "arity": "1",
16 "types": ["Filter"]
17 }
18 ],
19 "language_template": "{0} greater

that or equal to {1}"
20 }

Listing 2: ”Greater Than or Equal” Operation Definition



Operation Operation Type Input
Arity

Input Attribute Types Output
Arity

Output Attribute Types

Average Aggregation 1 [Arithmetic, Metric] 1 [Arithmetic, Metric]
≤ 1 [Grouping]

Correlation Aggregation 2 [Arithmetic, Metric, Datetime] 1 [Arithmetic, Metric, Datetime]
≤ 1 [Grouping]

Count Aggregation 1 [Arithmetic, Metric] 1 [Arithmetic, Metric]
≤ 1 [Grouping]

Count Unique Aggregation 1 [Arithmetic, Metric] 1 [Arithmetic, Metric]
≤ 1 [Grouping]

Get One Aggregation 1 [Arithmetic, Metric, Datetime] 1 [Arithmetic, Metric, Datetime]
≤ 1 [Grouping]

Max Aggregation 1 [Arithmetic, Metric, Datetime] 1 [Arithmetic, Metric, Datetime]
≤ 1 [Grouping]

Median Aggregation 1 [Arithmetic, Metric, Datetime] 1 [Arithmetic, Metric, Datetime]
≤ 1 [Grouping]

Min Aggregation 1 [Arithmetic, Metric, Datetime] 1 [Arithmetic, Metric, Datetime]
≤ 1 [Grouping]

Standard Deviation Aggregation 1 [Arithmetic, Metric] 1 [Arithmetic, Metric]
≤ 1 [Grouping]

String Aggregation Aggregation 1 [Arithmetic, Metric, Datetime] 1 [Arithmetic, Metric, Datetime]
≤ 1 [Grouping]

Sum Aggregation 1 [Arithmetic] 1 [Arithmetic, Metric]
≤ 1 [Grouping]

And Boolean ≥ 1 [Filter] 1 [Filter]

Contains Boolean 1 [Attribute] 1 [Filter]
1 [Metric]

Exact Boolean 2 [Arithmetic, Metric, Categorical,
String, Datetime, Identifier]

1 [Filter]

Greater Than Boolean 2 [Arithmetic, Metric, Datetime] 1 [Filter]
Greater Than Equal Boolean 2 [Arithmetic, Metric, Datetime] 1 [Filter]
Less Than Boolean 2 [Arithmetic, Metric, Datetime] 1 [Filter]
Greater Than Equal Boolean 2 [Arithmetic, Metric, Datetime] 1 [Filter]
Not Boolean 1 [Filter] 1 [Filter]
Or Boolean ≥ 1 [Filter] 1 [Filter]
Add Arithmetic ≥ 2 [Arithmetic, Metric] 1 [Arithmetic, Metric, Datetime]
Divide Arithmetic ≥ 2 [Arithmetic, Metric] 1 [Arithmetic, Metric, Datetime]
Multiply Arithmetic ≥ 2 [Arithmetic, Metric] 1 [Arithmetic, Metric, Datetime]
Percent Change Arithmetic 2 [Arithmetic, Metric] 1 [Arithmetic, Metric]
Square Root Arithmetic 1 [Arithmetic, Metric, Datetime] 1 [Arithmetic, Metric, Datetime]
Subtract Arithmetic ≥ 2 [Arithmetic, Metric, Datetime] 1 [Arithmetic, Metric, Datetime]
Collect Data Operation ≥ 1 [Attribute] 1 [AttributeCollection]
Groupby Data Operation ≥ 1 [Categorical, Datetime] 1 [Grouping]
Limit Data Operation 1 [Attribute] 1 [Limit]

Return Data Operation

1 [AttributeCollection] 1 [Entity]
≤ 1 [Filter]
≤ 1 [Sort]
≤ 1 [Limit]

Sort Data Operation ≥ 1 [Attribute] 1 [Sort]
1 [String]

Retrieve Attribute Retrieval 1 [Entity] 1 [Attribute]
1 [String]

Retrieve Entity Retrieval 1 [String] 1 [Entity]

Table 2: The set of all operations implemented as part of the analytics taxonomy. This includes operations used for retrieval,
analysis, filtering, and data transformations.

1 {
2 "name": "multiply",
3 "input_args": [
4 {
5 "arity": ">=2",

6 "types": [
7 "Arithmetic",
8 "Metric"
9 ]

10 }



11 ],
12 "output_args": [
13 {
14 "arity": "1",
15 "types": [
16 "Arithmetic",
17 "Metric"
18 ]
19 }
20 ],
21 "language_template": "{0} multiplied

by {1}"
22 }

Listing 3: Multiply Operation Definition

C Domain Labeling Examples
While we plan to expand to additional data source types
(e.g., knowledge graphs or documents), the domain labeling
is currently only structured to support relational databases.
Domain labelings are divided into three main sections: meta-
data about the labeling (”id”, ”name”, and ”description”),
data source schema information (”dataSource”), and the data
abstraction layer definition (”dataAbstraction”). The data
source schema information defines the tables and joins in
the database. The data abstraction layer definition defines
the entities and relationships between them. Entities are de-
fined in terms of one or more tables in the database, and their
attributes are defined in terms of one or more columns from
the entity’s tables. Relationships are defined in terms of one
or more joins.

Note that construction of these domain labelings is semi-
automated by having a user fill in the blanks (e.g. entities,
attributes, relationships, joins, etc.) in a pre-annotated CSV
file and then passing this to a script that converts this into
the final JSON configuration format that actually gets in-
gested by the system upon startup. We are currently work-
ing to make this process more streamlined via an interactive
interface, which is left as future work.

The JSON in Listing 4 depicts an example of a domain
labeling configuration for the air quality database. Here, 2
entities - AQI and Wildfire - are defined, each comprising a
single corresponding table. A single relationship, defined by
the join that connects the underlying tables, links those two
entities.

The JSON in Listing 5 example depicts a truncated
domain labeling configuration for the SCALES-OKN
database. Two entities - Case and Judge - are defined.
Here, the Case entity comprises two database tables: ”cases”
(the primary table), and ”case type”. The latter table is
used by the case type attribute of the Case entity to refer-
ence the ”name” column from that table using the ”cases-
Tocase type” join. The relationship linking the two enti-
ties in this labeling, CaseToJudge, is a many-to-many re-
lationship (m2m) and as such comprises two joins: the
one-to-many joining the ”judges” table with the resolu-
tion table ”judge on case” and the many-to-one joining the
”judge on case” table with the ”cases” table.



1 {
2 "rid": "Toxic-3418-r4hu-4289-38jd93k29s",
3 "name": "Air_Quality",
4 "description": "Toxics and Air Quality (Jan 2000-Jun 2022)",
5 "dataSource": {
6 "type": "postgres",
7 "connectionString": "<url_to_database>",
8 "tables": [
9 {"name": "aqi", "primaryKey": {"id": "integer"}},

10 {"name": "wildfire", "primaryKey": {"id": "integer"}}
11 ],
12 "joins": [
13 {"name": "wildfireToaqi", "from": "wildfire", "to": "aqi",
14 "path": [["wildfire.county_state", "aqi.county_state", "string"]]}
15 ]
16 },
17 "dataAbstraction": {
18 "relationships": [
19 {"name": "AQIToWildfire", "from": "AQI", "to": "Wildfire",
20 "join": ["aqiTowildfire"], "relation": "o2o"}
21 ],
22 "entities": [
23 {
24 "name": "AQI",
25 "nicename": ["Air Quality Index", "Air Quality Indices"],
26 "table": "aqi",
27 "id": "id",
28 "idType": "integer",
29 "attributes": {
30 "id": {
31 "nicename": ["ID", "IDs"],
32 "isa": "string",
33 "type": ["Identifier", "Categorical"],
34 "source": {"table": "aqi", "columns": ["id"]}
35 },
36 "state_name": {
37 "nicename": ["state", "states"],
38 "isa": "string",
39 "type": ["Categorical"],
40 "source": {"table": "aqi", "columns": ["state_name"]}
41 },
42 "county_name": {
43 "nicename": ["county name", "county names"],
44 "isa": "string",
45 "type": ["Categorical"],
46 "source": {"table": "aqi", "columns": ["county_name"]}
47 },
48 "year": {
49 "nicename": ["year", "years"],
50 "isa": "integer",
51 "type": ["Categorical"],
52 "source": {"table": "aqi", "columns": ["year"]}
53 },
54 "days_with_aqi": {
55 "nicename": ["days with air quality index",
56 "days with air quality index"],
57 "isa": "integer",
58 "type": ["Arithmetic"],
59 "source": {"table": "aqi", "columns": ["days_with_aqi"]}
60 },
61 "good_days": {
62 "nicename": ["good days", "good days"],
63 "isa": "integer",
64 "type": ["Arithmetic"],
65 "source": {"table": "aqi", "columns": ["good_days"]}



66 },
67 "moderate_days": {
68 "nicename": ["moderate days", "moderate days"],
69 "isa": "integer",
70 "type": ["Arithmetic"],
71 "source": {"table": "aqi", "columns": ["moderate_days"]}
72 },
73 "unhealthy_for_sensitive_groups": {
74 "nicename": ["unhealthy for sensitive groups",
75 "unhealth for sensitive groups"],
76 "isa": "integer",
77 "type": ["Arithmetic"],
78 "source": {"table": "aqi",
79 "columns": ["unhealthy_for_sensitive_groups"]}
80 },
81 "unhealthy_days": {
82 "nicename": ["unhealthy days", "unhealthy days"],
83 "isa": "integer",
84 "type": ["Arithmetic"],
85 "source": {"table": "aqi", "columns": ["unhealthy_days"]}
86 },
87 "very_unhealthy_days": {
88 "nicename": ["very unhealthy days", "very unhealthy days"],
89 "isa": "integer",
90 "type": ["Arithmetic"],
91 "source": {"table": "aqi", "columns": ["very_unhealthy_days"]}
92 },
93 "hazardous_days": {
94 "nicename": ["hazardous days", "hazardous days"],
95 "isa": "integer",
96 "type": ["Arithmetic"],
97 "source": {"table": "aqi", "columns": ["hazardous_days"]}
98 },
99 "max_aqi": {

100 "nicename": ["max air quality index", "max air quality index"],
101 "isa": "integer",
102 "type": ["Arithmetic"],
103 "source": {"table": "aqi", "columns": ["max_aqi"]}
104 },
105 "90th_percentile_aqi": {
106 "nicename": ["90th percentile air quality index",
107 "90th percentile air quality index"],
108 "isa": "integer",
109 "type": ["Arithmetic"],
110 "source": {"table": "aqi", "columns": ["90th_percentile_aqi"]}
111 },
112 "median_aqi": {
113 "nicename": ["median air quality index", "median air quality index

"],
114 "isa": "integer",
115 "type": ["Arithmetic"],
116 "source": {"table": "aqi", "columns": ["median_aqi"]}
117 }
118 }
119 },
120 {
121 "name": "Wildfire",
122 "nicename": ["Wildfire", "Wildfires"],
123 "table": "wildfire",
124 "id": "id",
125 "idType": "integer",
126 "attributes": {
127 "state_name": {
128 "nicename": ["state", "states"],
129 "isa": "string",



130 "type": ["Categorical"],
131 "source": {"table": "wildfire", "columns": ["state_name"]}
132 },
133 "county_name": {
134 "nicename": ["county name", "county names"],
135 "isa": "string",
136 "type": ["Categorical"],
137 "source": {"table": "wildfire", "columns": ["county_name"]}
138 },
139 "fire_size": {
140 "nicename": ["fire size", "fire sizes"],
141 "isa": "float",
142 "type": ["Arithmetic"],
143 "source": {"table": "wildfire", "columns": ["fire_size"]}
144 },
145 "fire_size_class": {
146 "nicename": ["fire size class", "fire size classes"],
147 "isa": "string",
148 "type": ["Categorical"],
149 "source": {"table": "wildfire", "columns": ["fire_size_class"]}
150 },
151 "discovery_time": {
152 "nicename": ["discovery time", "discovery times"],
153 "isa": "integer",
154 "type": ["Categorical"],
155 "source": {"table": "wildfire", "columns": ["discovery_time"]}
156 },
157 "discovery_date": {
158 "nicename": ["discovery date", "discovery dates"],
159 "isa": "date",
160 "type": ["Categorical"],
161 "source": {"table": "wildfire", "columns": ["discovery_date"]}
162 },
163 "contained_date": {
164 "nicename": ["contained date", "contained dates"],
165 "isa": "date",
166 "type": ["Categorical"],
167 "source": {"table": "wildfire", "columns": ["contained_date"]}
168 },
169 "fire_name": {
170 "nicename": ["fire name", "fire names"],
171 "isa": "string",
172 "type": ["Categorical"],
173 "source": {"table": "wildfire", "columns": ["fire_name"]}
174 },
175 "source_system_type": {
176 "nicename": ["source system type", "source system types"],
177 "isa": "string",
178 "type": ["Categorical"],
179 "source": {"table": "wildfire", "columns": ["source_system_type"]}
180 },
181 "year": {
182 "nicename": ["year", "years"],
183 "isa": "integer",
184 "type": ["Categorical"],
185 "source": {"table": "wildfire", "columns": ["year"]}
186 }
187 }
188 }
189 ]
190 }
191 }

Listing 4: Air Quality Domain Labeling



1 {
2 "rid": "SCALES-1467-4a02-8785-ec251e78d5be",
3 "name": "scales",
4 "description": "U.S. federal court records covering a variety of aspects of both civil

and criminal proceedings, including parties, judges, attorneys, case metadata and
docket entries.",

5 "dataSource": {
6 "type": "postgres",
7 "connectionString": "<url_to_database>",
8 "tables": [
9 {"name": "cases", "primaryKey": {"ucid": "string"}},

10 {"name": "case_type", "primaryKey": {"id": "integer"}},
11 {"name": "judge_on_case", "primaryKey": {"id": "integer"}},
12 {"name": "judges", "primaryKey": {"sjid": "string"}}
13 ],
14 "joins": [
15 {
16 "name": "casesTocase_type",
17 "from": "cases",
18 "to": "case_type",
19 "path": [["cases.case_type_id", "case_type.id", "integer"]]
20 },
21 {
22 "name": "judge_on_caseTojudges",
23 "from": "judge_on_case",
24 "to": "judges",
25 "path": [["judge_on_case.sjid", "judges.sjid", "string"]]
26 },
27 {
28 "name": "judge_on_caseTocases",
29 "from": "judge_on_case",
30 "to": "cases",
31 "path": [["judge_on_case.ucid", "cases.ucid", "string"]]
32 }
33 ]
34 },
35 "dataAbstraction": {
36 "relationships": [
37 {
38 "name": "CaseToJudge",
39 "from": "Case",
40 "to": "Judge",
41 "join": ["judge_on_caseTojudges", "judge_on_caseTocases"],
42 "relation": "m2m"
43 }
44 ],
45 "entities": [
46 {
47 "name": "Case",
48 "nicename": ["case", "cases"],
49 "table": "cases",
50 "id": "ucid",
51 "idType": "string",
52 "attributes": {
53 "case_id": {
54 "nicename": ["case ID", "case IDs"],
55 "isa": "string",
56 "type": ["Identifier"],
57 "source": {"table": "cases", "columns": ["case_id"]}
58 },
59 "ucid": {
60 "nicename": ["UCID", "UCIDs"],
61 "isa": "string",
62 "type": ["Identifier"],
63 "source": {"table": "cases", "columns": ["ucid"]}



64 },
65 "monetary_demand": {
66 "nicename": ["monetary demand", "monetary demands"],
67 "units": ["dollar", "dollars"],
68 "isa": "float",
69 "type": ["Arithmetic"],
70 "source": {"table": "cases", "columns": ["monetary_demand"]}
71 },
72 "billable_pages": {
73 "nicename": ["billable page", "billable pages"],
74 "isa": "integer",
75 "type": ["Arithmetic"],
76 "source": {"table": "cases", "columns": ["billable_pages"]}
77 },
78 "filing_date": {
79 "nicename": ["filing date", "filing dates"],
80 "isa": "date",
81 "type": ["Datetime"],
82 "source": {"table": "cases", "columns": ["filing_date"]}
83 },
84 "terminating_date": {
85 "nicename": ["terminating date", "terminating dates"],
86 "isa": "date",
87 "type": ["Datetime"],
88 "source": {"table": "cases", "columns": ["terminating_date"]}
89 },
90 "year": {
91 "nicename": ["year", "years"],
92 "isa": "integer",
93 "type": ["Categorical"],
94 "source": {"table": "cases", "columns": ["year"]}
95 },
96 "case_name": {
97 "nicename": ["case name", "case names"],
98 "isa": "string",
99 "type": ["Categorical"],

100 "source": {"table": "cases", "columns": ["case_name"]}
101 },
102 "jurty_demand": {
103 "nicename": ["jury demand", "jury demands"],
104 "isa": "string",
105 "type": ["Document"],
106 "source": {"table": "cases", "columns": ["jury_demand"]}
107 },
108 "cause": {
109 "nicename": ["cause", "causes"],
110 "isa": "string",
111 "type": ["Categorical"],
112 "source": {"table": "cases", "columns": ["cause"]}
113 },
114 "jurisdiction": {
115 "nicename": ["jurisdiction", "jurisdictions"],
116 "isa": "string",
117 "type": ["Categorical"],
118 "source": {"table": "cases", "columns": ["jurisdiction"]}
119 },
120 "case_flags": {
121 "nicename": ["case flag", "case flags"],
122 "isa": "string",
123 "type": ["Categorical"],
124 "source": {"table": "cases", "columns": ["case_flags"]}
125 },
126 "case_duration": {
127 "nicename": ["case duration", "case duration"],
128 "isa": "integer",



129 "type": ["Arithmetic"],
130 "source": {"table": "cases", "columns": ["case_duration"]}
131 },
132 "judge": {
133 "nicename": ["judge", "judges"],
134 "isa": "string",
135 "type": ["Categorical"],
136 "source": {"table": "cases", "columns": ["judge"]}
137 },
138 "referred_judges": {
139 "nicename": ["referred judge", "reffered judges"],
140 "isa": "string",
141 "type": ["Categorical"],
142 "source": {"table": "cases", "columns": ["reffered_judges"]}
143 },
144 "case_status": {
145 "nicename": ["case status", "case status"],
146 "isa": "string",
147 "type": ["Categorical"],
148 "source": {"table": "cases", "columns": ["case_status"]}
149 },
150 "cost": {
151 "nicename": ["cost", "costs"],
152 "units": ["dollar", "dollars"],
153 "isa": "float",
154 "type": ["Arithmetic"],
155 "source": {"table": "cases", "columns": ["cist"]}
156 },
157 "case_type": {
158 "nicename": ["case type", "case types"],
159 "isa": "string",
160 "type": ["Categorical"],
161 "source": {
162 "table": "case_type",
163 "columns": ["name"],
164 "joins": ["casesTocase_type"]
165 }
166 }
167 },
168 {
169 "name": "Judge",
170 "nicename": ["judge", "judges"],
171 "table": "judges",
172 "id": "id",
173 "idType": "integer",
174 "attributes": {
175 "sjid": {
176 "nicename": ["SJID", "SJIDs"],
177 "isa": "string",
178 "type": ["Identifier"],
179 "source": {"table": "judges", "columns": ["sjid"]}
180 },
181 "name": {
182 "nicename": ["name", "names"],
183 "isa": "string",
184 "type": ["Categorical"],
185 "source": {"table": "judges", "columns": ["name"]}
186 }
187 }
188 }
189 ]
190 }
191 }

Listing 5: Judicial Data Domain Labeling


